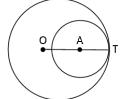

- Q.1 Solve the following (IX)
 - 1 Assume that, $\Delta RST \sim \Delta XYZ$. Complete the following statements. $\frac{\mathrm{RT}}{\mathrm{XZ}} = \frac{\mathrm{.....}}{\mathrm{YZ}}, \ \frac{\mathrm{RS}}{\mathrm{XY}} = \frac{\mathrm{ST}}{\mathrm{....}}, \ \frac{\mathrm{XY}}{\mathrm{....}} = \frac{\mathrm{YZ}}{\mathrm{ST}}$

- If P is the centre of the circle with radius 6.7 cm, d(P, Q) = 7.6 cm, d(P, R) = 5.7 cm, find the positions of the points 2 R and Q.
- Q.2 Attempt the following (IX)
 - 1 Radius of circle is 34 cm. And distance of chord from center is 24 cm. Find distance of chord from its center
 - 2 In right angled triangle XYZ if $\angle Z = \theta$, $\angle y = 90^\circ$, $\cos \theta = \frac{24}{25}$. Find $\sin \theta$ and $\tan \theta$.
- Q.3 Multiple Choice Questions
 - Points A, B, C are on a circle, such that $m(arc AB) = m(arc BC) = 120^{\circ}$. No point, except point B, is common to the 1 arcs. Which is the type of $\angle ABC$?
 - a. Equilateral triangle
 - b. Scalene triangle
 - c. Right angled triangle
 - d. Isosceles triangle
 - Two circles of radii 5.5 cm and 3.3 cm respectively touch each other. What is the distance between their centers ? 2 a. 4.4 cm b. 8.8 cm c. 2.2 cm d. 8.8 or 2.2 cm
- Q.4 Solve the following
 - 1

4

4



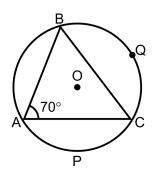
In the adjoining figure, m(arc NS) = 125° , m(arc EF) = 37° , find the measure of $\angle NMS$.

- 2 Two circles of radii 5.5 cm and 4.2 cm touch each other externally. Find the distance between their centres.
- Q.5 Attempt the following

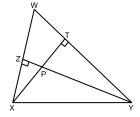
. \cap ۸

1 Two circles having radii 3.5 cm and 4.8 cm touch each other internally. Find the distance between their centres.

Let two circles with centres O and A touch each other internally at point T

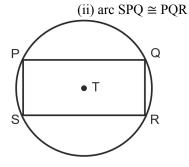

In the following figure 'O' is the centre of the circle. $\angle AOB = 110^\circ$, m (arc AC) = 45°. 2 Use the information and fill in the boxes with proper numbers.

i. m (arc AXB) = ____ ii. m (arc CAB) = ____
iii.
$$\angle COB = ___ Y$$
 iv. m (arc AYB) = ____
COO
A B B


Q.6 Answer the following

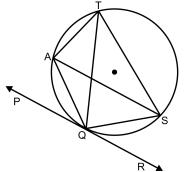
> 1 In the figure, m (arc APC) = 100° and $\angle BAC = 70^{\circ}$. Find i. ∠ABC ii. m (arc BQC).

4



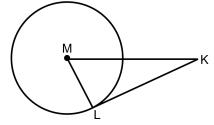
2 In altitudes YZ and XT of Δ WXY intersect at P. Prove that, (1) \Box WZPT is cyclic. (2) Points X, Z, T, Y are concyclic.

Q.7 Solve the following

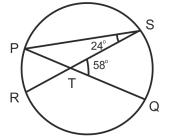

- 1 Prove: Theorem of internal division of chords.
- 2 In the figure, a rectangle PQRS is inscribed in a circle with centre T. Prove that, (i) arc PQ \cong arc SR

Q.8 Answer the following

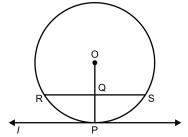
1


- In line PR touches the circle at point Q. Answer the following questions with the help of the figure.
 - (1) What is the sum of \angle TAQ and \angle TSQ ?
 - (2) Find the angles which are congruent to $\angle AQP$.
 - (3) Which angles are congruent to $\angle QTS$?
 - (4) $\angle TAS = 65^{\circ}$, find the measure of $\angle TQS$ and arc TS.
 - (5) If $\angle AQP = 42^{\circ}$ and $\angle SQR = 58^{\circ}$ find measure of $\angle ATS$.

2 In M is the centre of the circle and seg KL is a tangent segment. If MK = 12, KL = $6\sqrt{3}$ then find -(1) Radius of the circle. 8


6

(2) Measures of $\angle K$ and $\angle M$.



Q.9 Answer the following

1 In figure, chords PQ and RS intersect at T.

- (i) Find m(arc SQ) if $m \angle STQ = 58^\circ$, $m \angle PSR = 24^\circ$.
- (ii) Verify, \angle STQ = $\frac{1}{2}$ [m(arc PR) + m(arc SQ)]
- (iii) Prove that : $\angle STQ = \frac{1}{2} [m(arc PR) + m(arc SQ)]$ for any measure of $\frac{1}{2} STQ$.
- (iv) Write in words the property in (iii).
- 2 In line l touches the circle with centre O at point P. Q is the mid point of radius OP. RS is a chord through Q such that chords RS \parallel line l. If RS = 12 find the radius of the circle.

